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Convection due to internal heat sources 

ByMORTEN TVEITEREID AND ENOK PALM 
Department of Mechanics, University of Oslo, Norway 

(Received 1 9  June 1975 and in revised form 15 March 1976)  

This paper is concerned with convection generated by uniformly distributed 
internal heat sources. By a numerical method it is found that the planform is 
down-hexagons for infinite Prandtl numbers and Rayleigh numbers up to a t  
least 15 times the critical value. The motion is also studied for finite Prandtl 
numbers and small supercritical Rayleigh numbers by using an amplitude 
expansion. It turns out that a small subcritical regime exists. Moreover, i t  also 
emerges that for Prandtl numbers less than 0.25 the stable planform is up- 
hexagons. In  § 3 a necessary condition in order to obtain a hexagonal planform 
is derived when the coefficients in the differential equations are a function of the 
vertical co-ordinate x .  

1. Introduction 
The purpose of this paper is to examine thermal convection generated by 

internal heat sources. This problem arises in connexion with the study of con- 
vection in the earth’s mantle, where the heat sources are due to radioactive 
material. The problem may also have a bearing on the thermal convection in 
clouds. This kind of convection is, however, very complicated since the heat 
sources, being released latent heat, depend strongly on the vertical motion. 

Convection by internal heat sources has been studied in several papers. Closely 
related to the present paper are the experimental studies by Tritton & Zarraga 
(1967) and Schwiderski & Schwab (1971) and the theoretical studies by Roberts 
(1967) and Thirlby (1970). Other papers on convection with internal heat sources 
have been published by Sparrow, Goldstein & Jonsson (1964), Whitehead & 
Chen (1970), Kulacki & Goldstein (1972) and McKenzie, Roberts & Weiss (1974). 
It is found that the motion is dependent on two dimensionless parameters: the 
Rayleigh number R (in a modified form) and the Prandtl number P. It is also 
found in the theory that for small Rayleigh numbers the heat is transported by 
conduction alone. For Rayleigh numbers larger than a certain value R,, depen- 
dent on the horizontal wavenumber a, but independent of the Prandtl number, 
heat transfer also takes place by convection. The minimum value of R, will be 
called R, and the corresponding value of the wavenumber a,. No experiments 
have to our knowledge been performed in which the computed values of RE and 
a, have been tested. 

The experiments by Tritton & Zarraga and Schwiderski & Schwab are con- 
fined to higher Rayleigh numbers, from 4R, up to about 8OR,. The main result of 
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these experiments is that a marked tendency towards formation of a hexagon- 
like pattern exists for Rayleigh numbers up to about 40Rc. For still higher R 
the hexagonal planform seems to be replaced by more ‘roll-like’ cells. The 
horizontal wavenumbers of the hexagons are close to a, for Rayleigh numbers of 
about 4R,. Above this value the horizontal length scale increases markedly. 
This observation may, however, be due to some unwanted imperfections in the 
experiments, a point we shall return to in 5 7. The convective fluid in the experi- 
ments was aqueous zinc sulphate solution with a Prandtl number of about 5.5. 
It was found for this fluid that the hexagons were down-hexagons, i.e. descending 
flow occurred in the centres of the cells and ascending flow a t  their peripheries. 
These findings resemble the results for ordinary BBnard convection when the 
fluid possesses a viscosity increasing with temperature. The essential difference 
is that the interval containing hexagons is much larger in the present case (see 
Palm 1975). A similar pattern of hexagons was found by Krishnamurti (1968a, 
b)  when examining convection in a fluid with a time-dependent mean tempera- 
ture. The convection set up in her experiment may in fact be interpreted as 
convection generated by internal heat sources. The main difference between the 
present problem and Krishnamurti’s is that in the latter case the effect of the 
heat sources is added to the ordinary BBnard convection as a perturbation. 

Roberts based his theory on a kind of mean-field approximation. This approxi- 
mation reduces effectively the computational work necessary and has been 
applied with great success to obtain the relation between the Nusselt number and 
the Rayleigh number for high Rayleigh numbers (Herring 1963, 1964). Roberts 
applied this method to study the stability of the steady nonlinear solutions. He 
found that for P = 6.7 the stable hexagons are down-hexagons, in agreement 
with observation. He also found, however, that no steady hexagons exist for 
R < 322, and that two-dimensional rolls are stable for all R.  There are no experi- 
ments available to check this result. On the other hand, this is in disagreement; 
with the result found in the present paper by an amplitude expansion. It is also 
in disagreement with our numerical results for infinite Prandtl number. This 
discrepancy may be due to the method he applied, which is probably too crude 
for this purpose. 

Thirlby computed the stability of the motion by applying a finite-difference 
method. He too obtained stable down-hexagons for a similar Prandtl number. 
He found, however, that hexagons only exist for R larger than about 5R,, whereas 
for R, < R < 5Rc a kind of rectangular cell pattern is stable. This result dis- 
agrees with our findings since we find that hexagons are the only stable planform 
for small supercritical Rayleigh numbers. For infinite Prandtl number we find 
that the hexagons are stable for values of R at least up to 15 times the critical 
value. 

In  $2 we shall derive the governing equations. In  $ 3  we shall derive a condition 
concerning the possibility of obtaining a hexagonal planform when the fluid 
properties depend explicitly on the vertical co-ordinate x (instead of explicitly 
on the temperature). In  $ 4  the steady solutions for infinite Prandtl number are 
derived by a numerical technique. The stability of these solutions is examined 
in 9 5. In  § 6 we apply an amplitude expansion, partly to examine the possibility 
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of subcritical instability and partly to study the convection for various Prandtl 
numbers. One result of this expansion procedure is that for Prandtl numbers 
lower than about 0.25 up-hexagons are found to be stable. 

2. The governing equations 
We consider a fluid layer of constant depth d and of infinite horizontal extent. 

To be in agreement with the experimental conditions, we assume that heat is 
generated uniformly in the fluid. Furthermore, the fluid is supposed to be bounded 
above by a rigid perfectly conducting plane maintained a t  constant temperature 
and t o  be bounded below by a rigid insulating plane. 

In  the Boussinesq approximation the basic equations become 

aqat +v. vv = p p p  - [i - o l ( ~  - T,)] gk + vvz~,  

a q a t  + v . VT = K V T  + Q/pocp, 

(2.1) 

v.v = 0, (2.2) 

(2.3) 

with the boundary conditions 

v = 0, aT/& = 0 at z = 0, 

v = O ,  T=O (2.4) 
at z = d.1 

Here t denotes the time, v(u, v, w) the velocity, p the pressure, T the temperature, 
To a reference temperature, po a reference density, Q the (constant) amount of 
heat generated per unit time and unit volume, g the acceleration due to gravity, 
k a unit vector directed upwards, z the vertical co-ordinate, a the coefficient of 
expansion, v the kinematic viscosity, K the thermal diffusivity and cp the specific 
heat. 

If the heat generated Q is sufficiently small, the heat transfer will be in the 
form of conduction. A steady-state flow then exists where 

T = T,(z) = (Q/~KP,C,) (d2 - z2 ) ,  p = P,(z), v = 0. (2.5) 

T = T,+e(x,y,z, t) ,  P = ps+p’(z,y,x,t).  (2.6) 

For larger values of Q, in the convective regime, we write 

The equations may be non-dimensionalized by using d,  d2/K,  K/d, Kvpo/d2 and 
~ v / g a d ~  as units of length, time, velocity, pressure and temperature, respectively. 
Omitting the prime in the pressure term, the equations then take the form 

P-yavlat + V. V V )  = - vp + ek + V ~ V ,  

aT/at + v . ve = vw + RZW, 

(2.7) 

v.v = 0, (2.8) 

(2.9) 

with the boundary conditions 

v = ae/az = 0 at z = 0, 

v = e = o  a t  z = 1. 
(2.10) 
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Here P is the Prandtl number and R the modified Rayleigh number, defined by 

P = v / K ,  R = ~ C L & ~ ~ / K ~ V ~ , C ~ .  (2.11) 

By means of (2.7)-(2.10) we shall obtain a set of steady-state solutions. To 
investigate which of these are stable we introduce an infinitesimal perturbation 
(B, 6,@) with a time dependence of the form exp (d). The perturbation equations 
may then be written as 

P-l(flB+ V .  VB+ 8. VV) = -OF + Ok fV29,  (2.12) 

v .7  = 0, 

d i - ~ . V B + i i . V %  = VzB"+RzG, 

with the boundary conditions 

Q = a8px = o at z = 0,)  

a = B = o  at z =  1.j 

(2.13) 

(2.14) 

(2.15) 

For known values of v and 6 these equations pose an eigenvalue problem for cr, 
determining the stability behaviour of the steady solution. 

The Rayleigh number R, at the onset of convection may be found from the 
linearized version of (2.7)-(2.10). Introducing the horizontal wavenumber a, 
defined by 

(2.16) 

R, becomes a function of a. This function is most readily found by developing 
the solution in a power series in z ,  as proposed by Sparrow et al. (1964). The result 
is shown in figure 1. The minimum value R, of R, and the corresponding value 
a, of a are found to be 

R, = 2772.27, a, = 2.63, (2.17) 

which are identical to t'he values found by Roberts. 

3. The occurrence of hexagonal patterns 
Compared with the equation for ordinary B6nard convection, the system of 

equations (2.7)-(2.10) is distinguished by one of the coefficients being a function 
of z .  As mentioned in 3 1, such a system of equations is also obtained in the tran- 
sient problem. It is obtained too when some fluid property depends explicitly 
on z.  Thus, by choosing the thermal diffusivity as a suitable function of z ,  we 
obtain governing equations which are formally the same as (2.7)-(2.10). Fluid 
properties varying with z may occur in thermal convection in a porous layer 
with varying grain diameter. A z-dependent (turbulent) viscosity or conductivity 
may also occur in convection in a turbulent fluid, for example in clouds. 

It is well established in the theory of B6nard convection that, for fluids with 
properties depending on the temperature, the planform will be hexagons at 
least for values of R close to R, (Palm 1960; Busse 1962). The question arises as 
to whether this is true also when the fluid properties are functions of z explicitly. 
If the answer is in the affirmative, we may conclude that this plaiiform will occur 
also in the present case. 
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FIGURE 1. The region of stability for hexagons. This figure is based on calculahd values 
for the Rayleigh numbers R, = 2772, 3000, 3200, 3500, 4000, 4500, 5000, 2R,, 2*5R,, ..., 
5R,,  GR,, ..., 10R,, 12R,, 14R,, 15R,, 18R,, 20R,. 

We shall consider Rayleigh numbers close to R, and write 

R-R, = AR = R,+R,+ ..., (3.1) 

where R, is of first order in the amplitude, R, of second order and so on. We 
introduce for the moment the four-dimensional vector u = (v, O ) ,  which corre- 
spondingly may be written as 

u = u,+u,+ ... f 

From the amplitude expansion in Palm (1960), Busse (1963) or Palm, Ellingsen 
& Gjevik (1967) i t  follows that it is the term R, in (3.1) (equivalent to the second- 
order term in the amplitude equation) which gives rise to the hexagonal pattern. 
Therefore, if R, is found to be zero, hexagons will not occur, whereas an I?, 
different from zero will lead to hexagons. 

(3.3) 
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Let L denote the linear operator of the problem. We then have for the first- 
and second-order terms 

Lu,-Vpl = 0, (3.3) 

Lu,-Vp, = u,.Vu,-h(z)R,w,e. (3.4) 

Here V denotes the three-dimensional gradient operator and e a unit vector 
along the 0 axis. h(z) is an arbitrary function of z, being a linear function in the 
present case. We now make the assumption that the operator (together with the 
boundary conditions) is self-adjoint, such that 

(Ul, Lu) = (u, Lu’), (3.5) 

where angle brackets denote the integrated vector product. The condition for 
(3.4) to have a solution gives 

(u’, u,. vu,) - R,[A(~)  W1e’] = o (3.6) 

for any solution u’ of (3.3). We have used the fact that the pressure term drops 
out owing to the condition of incompressibility. Square brackets denote integra- 
tion over the entire fluid layer. The first term in (3.6) is zero for self-adjoint 
problems (Schluter, Lortz & Busse 1965). We therefore conclude that for self- 
adjoint problems R, is zero and the planform is not hexagons. 

It may easily be shown that the problem is self-adjoint if the viscmity is a 
function of z or, in porous convection, the permeability is a function of z. The 
problem is, however, not self-adjoint in the present case, nor in the transient case 
nor when the thermal diffusivity varies with z. Therefore, in these problems we 
do expect a hexagonal pattern, at least for values of R close to R,,. 

4. The steady solutions 
Equations (2.7)-(2.10) will now be solved by a numerical approach. To 

simplify the problem we assume that the Prandtl number is infinite, whereby 
(2.7) becomes linear. As is well known, in BBnard convection this approximation 
is rather good also for moderate Prandtl numbers. Finite Prandtl number con- 
vection will be discussed using an amplitude expansion in $6.  

The velocity may appropriately be written (Chandrasekhar 1961, p. 24; 
Schulter et al. 1965) as 

v = (a, v, w) = sv = (az/axaz, azlagaz, - v:) v, (4.1) 

where V2, is the horizontal Laplacian. Eliminating the pressure term we obtain 
from (2.7)-(2.10) 

v4v-8 = 0,  ( 4 4  

(4.3) 1720 - RZV; v = aelat + v . ve, 
with the boundary conditions 

v = av/az = aelaz = o a t  z = 0, 

v = av/az = e = o a t  z = 1. 
(4.4) 
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We consider solutions periodic in the x and y directions. 8 may then be ex- 
panded in a complete set of Fourier modes, each of them satisfying the boundary 
conditions 

8 = X Bpqh exp {i(pkx + qly)} cos (h  - &) nz. (4.5) 

Here L and l are the components of the wavenumber vector in the x and y direc- 
tions, respectively. The summation runs through all integers 

- O O < P < C O ,  - O O < ~ < C O ,  I < ~ < c o .  

To ensure that (4.5) is real Bpqh = Bt,-,h, where the star denotes the complex 
conjugate. Introducing (4.5) into (4.2) and applying the boundary conditions, 
we obtain 

v = I;B,,,exP{i(Pkx+qly))Fh(K,z), (4.6) 

where K~ = (PL)~ + (ql)2. The function F h ( ~ ,  z )  is given in the appendix. 
The unknown coefficients BPqh are determined from (4.3) by applying a 

Galerkin procedure. Introducing (4.5) and (4.6) into (4.3), multiplying this by 
exp { - i ( rkx  +sly)} cos (g - 4) m and averaging over the fluid layer, we obtain 

h 

+ zd z ((Ptk2-t qu12) b(h, K,f, 9 )  + K 2 4 ,  K,f, 9 ) )  B,,hBt%f. (4.7) 
p + t = r  h , f  
q+u=s 

Here v2 = ( rk ) ,  + (sl),, and the coefficients a, b and c are given in the appendix. 
Equation (4.7) represents an infinite set of coupled first-order ordinary differen- 
tial equations. 

To solve the problem i t  is necessary to make some simplifications. According 
to 5 3 the expected planform is hexagons. To first order, hexagons are given by 
the Fourier modes 

A,, cos kx cos ly +A,,  cos 2ly, (4.8) 

k 2 + P  = 412 = a,, A,, = L- 2A,,. (4-9) 

It is noted that A,, = 0 corresponds to two-dimensional rolls, whereas A,, = 0 
corresponds to a rectangular pattern. If the first-order terms are given by (4.8), 
the higher-order terms excited will be of the form A, cos ikx cosjly, where i 
and j are integers such that i +j is even. We shall seek only steady solutions of 
this form, which implies that the B,,, are all real and 

B r w  = B-y-8, = Br-sg = B+sg. 

Further, we have found i t  appropriate to truncate the infinite system of differen- 
tial equations by neglecting all modes for which g2 + $r2 + i s z  > M 2  + 1. Here 
the integer M must be chosen such that the solution of the finite system differs 
by a sufficiently small amount from the solution found by replacing M by M + 1. 
Following Thirlby (1970) we choose the non-dimensional quantity N ,  defined by 

N = AT'IAT, (4.10) 

t.0 represent the solution, where AT is the mean temperature difference between 
the horizontal planes and AT' the temperature difference in the case of pure heat 
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RIRC 

FIGURE 2. The Nusselt number as a function of the Rayleigh number for Jf = 4, 5 and 6. 
This figure (and figure 3) is based on calculated values for the same Rayleigli numbers as 
in figure 1. In  addition, we have calculated the curves at several points between R = R, 
and R = 3200. 

conduction. We therefore require that (N, - NA,f-l)/iVII = E , ~  be much smaller 
than unity. N& for M = 4, 5 and 6 is displayed in figure 2. It may be seen that 
e6 M 0.007 for RIR, = 15. 

The equations were first solved as an initial-value problem by using a Runge- 
Kutta method, modified by Kvernvold (1975). Different initial conditions were 
chosen. For example, in one of the runs A,, was put equal to zero, i.e. the initial 
pattern consisted of rectangular cells. In  another run A,, (and the higher-order 
terms) was given a value corresponding to steady two-dimensional rolls whereas 
A,, was chosen very small. In  all cases we found that the solution for increasing 
values of time approaches a hexagonal pattern with downward motion in the 
centre of each cell. 

The subscripts r and s attached to B,,, satisfy an equation of the form 
3r2+s2 = 4n, where n is an integer. The appearance of hexagons for increasing 
values of time was revealed by the fact. that all B,,, with the same n and g 
approached the same steady value. Some of these coefficients, calIed Brig, are 
shown in figure 3 for a = a, = 2-83. It is noted that the coefficients B,, and B,, 
(and partly B,,) tend to dominate for R/R, < 15. 

These introductory runs suggested that hexagons are a stable pattern, in 
contrast to, for example, two-dimensional rolls. We found it desirable, however, 
to examine the stability of the hexagons more carefully and more broadly. In 
our runs we considered only motion with a specific wavenumber. We therefore 
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FIGURE 3. Sorne of the amplitudes ws. the Rayleigh number. 

wanted to examine the stability behaviour of the hexagons for more general 
disturbances. We also wanted to consider hexagons of various horizontal wave- 
lengths and for Rayleigh numbers as high as permissible. This led us to seek 
the steady solutions by a Newton-Raphson method (which converges consider- 
able faster than the Runge-Kutta method) and, as discussed in the next section, 
to perturb the steady solutions by a rather general disturbance. 

The number N defined by (4.10) expresses the heat transport at the upper 
plane divided by the (virtual) heat transport by pure conduction for the same AT. 
N is therefore a Nusselt number, being unity in the conductive state and larger 
than unity in the convective regime. Figure 2 shows the relation between the 
Nusselt number and the Rayleigh number. The same curve is also shown in 
figure 4 with a logarithmic scale for the R/Rc axis. It is seen that t'o a good 
approximation 

(4.11) 
where C is found to be 0.64. 

The horizontally averaged temperature (non-dimensional), given by 

T = 0.5( 1 - z2)  + 1/R C B,, cos (9 - i) ~ T Z ,  (4.12) 
Q 

is shown in figure 5 for various values of RIR, with a = a,c. 
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FIGURE 4. The Nusselt number as a function of the Rayleigh number with a logarithmic 
scale for the R/R, axis, showing N = 0.64 log (RIR,) + 1. 
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FIGURE 5 .  The horizontally averaged temperature for different 
values of B/Rc with a = a,. 

5. The stability of the steady solutions 

obtain from (2.12)-(2.15) 
By eliminating the pressure in (2.12) and using the fact that P = 00, we 

04P-8 = 0, (5.1) 

V28-RxV? P = cdi-v.V78+TTVVB, (5.2) 
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where 

The boundary conditions are 

Q = (.ii,v",iz) = sP = (a2/axaz,a2/ayaZ, -vf) P. (5.3) 

I T = aB/az = a8/az = o at z = 0, 

P = aria2 = 8 = o a t  x = 1. 

Introducing in (5.2) the steady solution corresponding to hexagons, a character- 
istic solution satisfying the boundary conditions may be written as 

(5.5) 

(5 .6)  

8 = exp { i ( ~ k x  + 6Zy)) C Bpqh exp {i(plcX + qly)) cos (h - 4) n-z, 

P = exp { ~ ( E J C X  + sly)) x Bpghexp {i(pkx + q~y) )  ~ ' ( 2 ,  x ) ,  

where X 2  = ( p + ~ ) 2 k ~ + ( q + & ) ~ Z ~  and F h ( ~ ,  z )  is given in the appendix. B and 6 
are arbitrary constants. When E and 6 are given all relevant values, (5.5) and 
(5.6) represent an arbitrary disturbance. It may be shown that in our problem 
(i.e. for a hexagonal pattern) it suffices to choose 0 d 6 6 1 and 0 < E 6 36. 

By multiplying (5.2) by exp { - i(skx + 6Zy)) exp { - i(rlcx + sly)} cos (g - 4) n-z 
and taking the average over the fluid layer, we obtain an infinite set of linear 
homogeneous equations determining the coefficients As in the preceding 
section we neglect modes for which g2+%r2+ $82 > M 2 +  1. The stability prob- 
lem is now reduced to finding c from the eigenvalue problem for the finite system 
of equations. 

The results of the computations are displayed in figure 1. We havk here set 
M = 4for R, < R < lOR,, M = 5for SR, < R < 18R,and M = 6for 

12R, < R < 30R,. 

In  the overlaps between these intervals we get, as indicated in the figure, a 
check on the accuracy of the computations. The curves in the figure&re drawn 
as solid lines up to R = 15Rc, where M = 5 and M = 6 give approximately the 
same result. The curves are dashed from 15R, up to 20R, since there is some dis- 
crepancy between the curves for M = 5 and M = 6. We found also that the 
curve had a similar appearance in the region ZOR, < R < 30R,. It is noted that 
the stable region for hexagons is rather narrow and centred about a = a,. 

In  the computations above we have assumed that c is real. This is a simplifying 
approximation which is usually believed to be valid for infinite Prandtl number, 
and therefore no shearing instability occurs (for ordinary BBnard convection, see 
Busse 1972). 

6. The amplitude expansion 
When we started this problem, we expected to find a finite region of subcritical 

instability. An amplitude expansion would then be of little interest since the 
validity of such an expansion most likely would be limited to the subcritical 
branch corresponding to unstable hexagons. However, the numerical computa- 
tions revealed that the subcritical region, if it  exists, must be of rather small 
extent. In  that case an amplitude expansion may be of interest, partly as a 
means to examine the possible subcritical region and partly to find the motion 
for small supercritical Rayleigh numbers in fluids with finite Prandtl number. 
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Intending to take into account terms u p  to the third order only, we write 

R-R,  = AR = R,+R,+ ..., (6.1) 

v = vl+v2+. . . ,  e = e,+e,+ ..., p =Pl+p2+ ..., (6.2)-(6.4) 

where, as in 5 3, R, denotes the first approximation, R, + R, the second approxi- 
mation, etc. and similarly for the other quantities. According to (2.7) and (2.9), 
the first-order equations are 

V2v, + 81 k - Vp1 = 0,  (6.5) 

V2e,+Rozw, = 0. (6-6) 

The solution of (6.5) and (6.6) satisfying (2.8) and the boundary conditions 
(2.10) may be written as 

L 

n=-L 
n*O 

8, = C,uj,g(z), ut, = exp ( ik , .r) ,  k ,  = -k-,, C, = CT,, (6.7) 

L 

n=-L 
nfO 

v , =  8 I; CnWnf (z ) ,  

where g(z) and f ( z )  are given in the appendix. 
The adjoint problem to (6.5), (6.6), (2.8) and (2.10) is 

V28 + R,&k - Vj3 = 0, (6.9) 

v2O+a = 0, V . 8  = 0, (6.10), (6.11) 

with the boundary conditions 

? = aO/az = o at x = 0, 

$ = O = O  at x = 1. 
(6.12) 

An arbitrary solution of (6.9)-(6.11) satisfying (6.12) may be written as 

(6.13) 

C N  = s ( a N , f ( z ) )  7 (6.14) 

h Ox = d j L V Q ( x ) ,  wN = exp(- ik , . r ) ,  

where f(z) and Q(z )  are given in the appendix. 
Assuming that a/at is of second order, the second-order terms are given by 

V'V, + 8, k - Vp2 = P-lv,. VV,, 

vw, + R, zw, = V, . ve, - R, zlcll. 

(6.15) 

(6.16) 

Correspondingly, for the third-order terms 

V ~ V ,  + e,k - vp, = P-~(v,. VV, + V, . vv, + av,/at), 

we, + R, xw, = v, . ve, + v, . ve, + ae,/at - R, ztu, - R, zull. 

The solution of the second-order equations is given in the appendix. 

(6.17) 

(6.18) 
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The solvability conditions for (6.15) and (6.16) and for (6.17) and (6.18) 

(6.19) 

determine R, and R2, respectively: 

R~[O~~JZL',] = [ONV,. VB,] + P-l[?N.  (v,. VV,)], 

R,[O,~~D,] = LO,(.,. VB, + v2 . ve, + ao,/at - ~,zuj,)l+ p-l[cN. (v, . VV,  + v,. vv, 
+ av,/at)l, (6.20) 

where square brackets denote integration over the fluid layer. 
We shall restrict the investigation to the case when L in (6.7) and (6.8) is 3 

and the wavenumber vectors k,, k, and k, are inclined a t  120" to each other. 
This system of modes contains the system (4.8) discussed in 9 4, and has, besides 
the hexagon solution, several other steady solutions. After some computations 
it is found by introducing the expressions for R, and R, into (6.1) that 

MCAV = ARC,- ACs+lCg-l - {P1C~~C~+ P,(CN+lC~+l+CN-lCs-l)}C*,. (6.21) 

Here iV = l7  2 or 3 and C,, = C, and C, = (7,. The other quantities are found to 
be (see appendix) 

(6.22) i M = 255+73P-l, 

Pl = 8.639 - 0*0284P-1 + 0*0373P-27 

P, = 10.40 + 0*4707P-1 + O*2088P-1. 

A = - 14.71 +3*687PF1, 

The system of equations (6.21) is formally identical to the system of six real 
equations in the ordinary B6nard problem discussed by Segel (1965, see also 
Busse 1962). Segel found that for supercritical Rayleigh numbers the system 
has three different types of possible equilibrium solution: (a)  hexagonal cells, 
( b )  two-dimensional roll cells, ( c )  a special closed cell labelled 'V'  in Segel & 
Stuart (1962). 

The equations also permit subcritical steady solutions in form of hexagons. 
In BBnard convection (c) is shown to be unstable. This is also found to be true 
in the present problem (since the quantity Q, defined below, is positive). We 
then formally end up with the same type of stable solutions as Segel. With essen- 
tially his notation we find that hexagons are the only stable planform in the 
range -a'2/4T < AR < a'2R1/Q27 both hexagons and two-dimensional rolls are 
stable for a'2R1/Q2 < AR < al2(4R' + R1)/Q2 whereas two-dimensional rolls are 
the only stable planform for AR > al2(4R' + Rl)/Q2. In  the present problem 

a' = A ,  R' = $(q+P,), R 

Q = P2-<, T = 2P2+P,. 
(6.23) 

As shown in figure 6 the subcritical range is rather small. It may be noted 
from figure 7 that the interval containing stable hexagons depends noticeably 
on the Prandtl number. This may also be seen from table 1.  We have checked 
the result in table 1 for the subcritical Rayleigh number in case of infinite Prandtl 
number by very detailed numerical computations, applying a Galerkin method. 
We found no steady solution for R = 2770.3 whereas a steady solution was 
obtained for R = 2770.5. This is in very good agreement with the amplitude 
expansion, which gives the subcritical Rayleigh number 2770.43 (where we have 
used the more exact value - 1.84 for AR-,). 
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P = x ,  
1 .nod 1 / . "- .  

1,003 - 

N 1,002 

7 - 6  -4  -2  0 L. 4 6 8 10 

AR 

FIGTJRE 6 .  The Nusselt number as a function of the Rayleigh number close to R, for 
different values of P .  - - -, unstable motion; ~ , stable motion. 

I P=oO 

1.08 - 

1.06 - 

N 
1.04 - 

R, 2800 2900 3000 3100 3200 
R 

FIGURE 7. The Nusselt number as a function of the Rayleigh number for different values 
of P .  - - -, unstable motion; __ , stable motion; . . . ., numerical calculations. 

P 

G o  

5.5 
0.7 
0.02 

AR-1 
- 1.8 
- 1.7 
- 0.7 
- 4.7 

ARl 
600 
500 

90 
10 

ARZ 
2000 
1600 
300 
70 

TABLE 1. Hexagons are stable for AR-, < AR < AR, and 
two-dimensional rolls are stable for AR > AR, 
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We note that for infinite Prandtl number hexagons occur for Rayleigh num- 
bers up to about 1*7R, whereas the numerical calculations gave hexagons up to 
at least 15R,. This discrepancy shows that the amplitude expansion containing 
only three terms is only reliable rather close to the critical Rayleigh number. 
On the other hand, i t  may be seen from figure 7 that the amplitude expansion 
gives fair agreement for the Nusselt number. This only confirms what is well 
known, that a useful approximation to the Nusselt number may be obtained by 
rather crude methods. 

From (6.21)) the sign of the circulation in the hexagons is determined by the 
sign of A .  It is found that the sign is negative for large and moderate Prandtl 
numbers, which gives down-hexagons. However, for values of P less than 0.25 
the coefficient changes sign and we obtain up-hexagons. For values of the Prandtl 
number close to 0.25 the planform will be two-dimensional rolls. 

7. Summary and conclusion 
The main result of the paper is demonstrated in figure 1, where it is shown that 

hexagons are stable a t  least up to 15 times R,. There is nothing in the computations 
which indicates that hexagons become unstable for higher Rayleigh numbers. 
The computations reveal that hexagons are formed even if the initial motion has 
a quite different pattern. The numerical calculations are confined to infinite 
Prandtl number, which is generally believed also to cover the case of moderate 
Prandtl numbers. 

To examine more closely the possibilities for subcritical convection and also 
to  study the motion for various Prandtl numbers, we applied an amplitude 
expansion, retaining only the three first terms. This expansion is only valid 
close to R,, where we obtain satisfactory agreement with the numerical calcu- 
lations. For higher Rayleigh numbers the amplitude expansion indicates that 
two-dimensional rolls become the only stable mode. The expansion is, however, 
not valid for these Rayleigh numbers, a t  least for large Prandtl numbers. We 
note that the Rayleigh number region corresponding to hexagons found from 
the amplitude expansion is much too small. This is probably also the case for 
ordinary BBnard convection (Hoard, Robertson & Acrivos 1970). 

For high and moderate values of the Prandtl number we find that the hexagons 
are down-hexagons, i.e. with descending motion a t  the cell centres. For Prandtl 
numbers less than 0.25 we obtain stable hexagons with ascending motion a t  the 
cell centres. 

In  $ 3  we have examined the horizontal planform in the case when the coeffi- 
cients in the differential equations depend on z. It is shown that a necessary 
condition for obtaining hexagons is that the linear problem is not self-adjoint. 

Our results are in accordance with the available observational data as far as 
the type of planformis concerned (Tritton & Zarraga 1967; Schwiderski & Schwab 
1971). The experiments are, however, confined to Rayleigh numbers larger than 
4R,, there being no observations for Rayleigh numbers close to R,. According to 
the theory the observed diameter of the cells should be close to the critical value. 
This is not found in the experiments, where the horizontal length scale increases 
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markedly with the Rayleigh number. According to Schwiderski & Schwab, 
the explanation for this discrepancy is most likely that the heating due to the 
electric current is rather strongly dependent on the temperature, and therefore 
not uniform in space. Indeed, by doubling the depth of the fluid layer in their 
experiments (whereby the difference in temperature between the horizontal 
planes was lowered by a factor of eight) they found that the increase in the 
diameter was effectively reduced. 

The results of our work may also be compared with earlier theoretical work 
by Roberts (1967) and Thirlby (1970). There is agreement as to the sign of the 
circulation in the cells (when P > 0.25) and the type of planform for moderate 
values of R. Roberts finds, however, that hexagons are not stable for small 
supercritical Rayleigh numbers. For water R must be larger than about 3Rc in 
order that hexagons are stable. Thirlby finds that a rectangular pattern is stable 
for Rayleigh numbers less than about 5R, and that hexagons are stable above 
this value. I n  favour of our result is the fact that we obtain the same answer for 
small supercritical Rayleigh numbers by both our methods. Another point is 
that i t  seems reasonable that a subcritical region consisting of hexagons exists 
in the present case. By continuity arguments we then expect hexagons also for 
small supercritical Rayleigh numbers. 

Appendix 
From (4.2) and (4.4)-(4.6) we obtain 

(d2/dz2 - K 2 ) 2 F h ( K ,  2) = cos (h- *) nz, (A 1) 

F!(K, z )  = P;(K, z )  = 0 at z = 0,l . .  (A 2 )  

with the boundary conditions 

The solution is 

Fh(~, 2) = A!(K) cos (h - 4) TZ + Q ~ ’ ( K )  cash KZ + C~’) (K)  z cosh KZ 

+ @ ) ( K )  sinh x + CJ%)(K) z sinh KZ,  (A 3) 
where 

A&) = ((h-&)2n2+K-8)--2, (A 4 4  

c i l ) ( K )  = -Ah(K), (A 4b) 

cp)(K) = - c y ’ ( K ) / K ,  (A 4d) 

C ~ ) ( K )  = ( A A ( ~ )  cosh K + O~’(K)  (K cosh K - sinh K))/sinh K. (A 4e) 

C ~ ) ( K )  = A A ( ~ )  ( K ~  + K cosh K sinh K + ( - 1)* (h - 4) n~ sinh K ) / ( K ~  - sinh2 K ) ,  (A 4c) 

The coefficients a, b and c in (4.7) are defined by 

x F ~ ( v ,  X )  cos (9 - 4) nZdX, 

b@, ~ , f ,  g )  = lo1 P;(K, z) cos (f- 4) nz cos (g - 4) nzdz,  

c(h, ~ , f ,  g) = (f- Q) n &(K,  x )  sin ( f -  &) nz cos (g - Q) nzdx. (A 5c) 1: 
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f ( z )  

0 
0 

- 0.4263 
1*0000 

-0.9304 - 
0.6917 

Q(z)  p = - g  p = &  p =  1 

1.000 0 0 0 
0 0 0 0 

3.458 0.2558 0.2692 0.2411 
0 -0.0971 -0.8862 -0.9690 

19.68 -0.2715 1.467 1.863 
24.75 - 0’0672 - 1.839 - 2.681 

/I=-+ p = &  p =  1 G o ( - l , ~ )  

0 0 0 -0,1750 
0 0 0 0 

0.6557 -0.1089 -0.1088 0 
-0.1607 0.4066 0.5129 1.497 

1.650 - 0.3569 - 0.5029 - 2.631 
4.947 0.8436 -1.610 5.067 

By introducing the expressions (6.7) and (6.8) into (6.5) and (6.6) and elimi- 
nating the pressure, we obtain the equations for f and g : 

(d2/dz2 - a2 ) 3 f +R,zf = 0, (d2/dz2-a2)  f -g = 0, (A 6) 

with the boundary conditions 

f = f ‘ = g ‘ = O  a t  z = O ,  f = f ’ = g = O  a t  z = l .  (AT) 

f and g may conveniently be written in the form (Sparrow et al. 1964) 
m m 

f =  I= Anzn, g =  2 B,zn. 
n=O n = O  

&,A,, ..., A,  are given in table 2 for a = a,. The other coefficients A ,  and B, 
are then easily obtained from (A 6). 

In the same manner we obtain the equations for? and @ from (6.9)-(6.14): 

(d2/&2 - u ~ ) ~  $ + R,z@ = 0, (d2/&2 - a’) @ + ~ 2 f  = 0, (A 9) 

with the boundary conditions 
A A  A A  

f = f ’ = @ ’ = O  a t  x = O ,  f = f ’ = @ = O  at z = 1 .  (A10) 

The first six coefficients in the power-series expansion for @ are given in table 2. 
Finally, the solution of (6.15) and (6.16) may be written as 

n, m I 

Here G(P, 2 )  = Go(P, 2) +P-lG,(p,  z) ,  -W3, z )  = 4,(,8, z )  +P-lFP(/3, 2 ) .  (A 12) 

Introducing (A 11)  into (6.15) and (6.16) gives 

(d2/dz2 - 2a2( 1 + p))”(p, 2 )  + R, 2 4  1 + p)  z q p ,  2 )  = f g’ - p f ’g - $I(/?) A2 f 
+ P-l{+( f ‘5’f+ (8 - B)f‘*’f’ + ( 2 - 3p)f”y” - a2( 1 - p) (f”f + 3f ’7’)) 
- a2(1 + p) (Yf+ (1 - 2/3)Yf’ - 2a2( f - /3)f’f)), (A 13a) 

{d2/dz2-2a2(I + p ) 2 } F ( p , ~ ) - G ( p , ~ )  = (2P)-‘{f”f-(I-22p)  f‘7’-262(1-/j)f’f}, 

(A 13b) 
32 P L M  76 
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with the boundary conditions 
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F = F ’ = G ’ = O  a t  z = O ,  F = F ’ = G = O  at z = 1 .  (A14) 

Here A is given by (6.22), I ( p )  = 1 for p = - and I ( p )  = 0 for p $. - 4. The 
first six coefficients in the power-series expansions for F(P, z )  and Go( - 1,  z )  are 
given in table 2. Go( - 1, z )  is given by the non-harmonic part of (6.16). 

In  order to calculate the coefficients in (6.21) we need the following expressions 
for the terms in (6.19) and (6.20): 

where the sums run through all n and m such that k, + k, = kN, 
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